
Multi-Property-Preserving Hash Domain Extension: The EMD Transform

Mihir Bellare and Thomas Ristenpart∗

August 4, 2006

Abstract
In this paper we (1) argue the benefits of replacing the cur-
rent MD transform with a multi-property-preserving do-
main extension transform that guarantees numerous prop-
erties of the hash function assuming they hold of the com-
pression function; (2) provide a practical, proven-secure
multi-domain extension transform suitable for use with
the next generation of hash functions; (3) point to some
subtle weaknesses in the transforms of Coron et al. [9]
that imply they are not only not suitable multi-property
transforms but in fact in some ways provide lower secu-
rity guarantees than even the current MD transform.

1 Introduction
B. Recall that hash functions are built in
two steps. First, one designs a compression function
h: {0, 1}d+n → {0, 1}n, where d is the length of a data
block and n is the length of the chaining variable. Then
one specifies a domain extension transform H that uti-
lizes h as a black box to implement the hash func-
tion Hh: {0, 1}∗ → {0, 1}n associated to h. All cur-
rent hash functions use the Merkle-Damgård (MD) trans-
form [12, 10] because it has been proven [12, 10] to be
collision-resistance preserving (CR-Pr): if h is collision-
resistant (CR) then so is Hh. This means that the cryptan-
alytic validation task can be confined to the compression
function.

A  . Current usage makes it obvious that CR
no longer suffices as the security goal for hash functions.
In order to obtain MACs and PRFs, hash functions were
keyed. The canonical construct in this domain is HMAC
[3, 2] which is widely standardized and used. (NIST FIPS
198, ANSI X9.71, IETF RFC 2104, SSL, SSH, IPSEC,
TLS, IEEE 802.11i, and IEEE 802.16e are only some
instances.) Hash functions are also used to instantiate
random oracles [4] in public-key schemes such as RSA-
OAEP [5] and RSA-PSS [6] in the RSA PKCS#1 v2.1
standard [16]. CR is insufficient for arguing the security
of hash function based MACs or PRFs, let alone hash-
function based random oracles. And it does not end there.
Whether hash function designers like it or not, application

∗Department of Computer Science and Engineering, UC San Diego,
{mihir,tristenp}@cs.ucsd.edu

builders will use hash functions for all kinds of tasks that
presume beyond-CR properties. Not all such uses can be
sanctified, but the central and common ones should be.
We think that the type of usage we are seeing for hash
functions will continue, and it is in the best interests of se-
curity to make the new hash functions rise as far towards
this bar as possible, by making them strong and versatile
tools that have security attributes beyond CR.

H   . The two-step design paradigm in cur-
rent use is compelling because it reduces the cryptana-
lytic task of providing CR of the hash function to cer-
tifying only that the compression function has the same
property. It makes sense to seek other attributes via the
appropriate extension of this paradigm. To spell it out, if
we want a hash function with properties P1, . . . ,Pn then
we should (1) design a compression function h with the
goal of having properties P1, . . . ,Pn, and (2) apply a do-
main extension transform H that provably preserves Pi

for every i ∈ [1..n]. We call such a compression func-
tion a multi-property one, and we call such a transform
a multi-property-preserving domain extension transform.
Note that we want a single transform that preserves mul-
tiple properties, resulting in a single, multi-property hash
function, as opposed to a transform per property which
would result in not one but numerous hash functions.

T . The goal of our paper is to point to the need
for a multi-property domain extension transform, point to
the properties it would be desirable for such a transform to
preserve, point to some weaknesses of existing transforms
in this regard, and finally propose a simple, new multi-
property preserving domain extension transform that is
suitable for standards.

W   ? We do not address
the problem of constructing a multi-property compression
function. We presume that this can and will be done,
and focus on the domain extension problem. Our confi-
dence in the emergence of strong compression functions
might be questioned in the light of the recent collision-
finding attacks [18, 17] that have destroyed some hash
functions and tainted others. But we do not feel a need
for pessimism. We recall the story for block ciphers,
where the AES yielded by the NIST competition was not
only faster than DES but seems stronger and more ele-
gant. We believe it will be the same for compression func-
tions. Namely, we believe that the cryptanalytic talent in

our community will yield compression functions having
the properties (CR and beyond) that we want, and perhaps
without increase, or even with decrease, in cost, compared
to current hash functions, just as happened for block ci-
phers. Rather than being conservative, we feel one should
take advantage of the chance to update our hash functions
by raising the bar in terms of requirements. We wish to
contribute to this process on the domain extension trans-
form side.

P  . The first question to ask is which
properties our multi-property domain extension transform
should preserve. We wish, of course, that the transform
continue to be CR-Pr, meaning that it preserve CR. An-
other obvious desirable property is that it be pseudoran-
dom function preserving (PRF-Pr). That is, if an appropri-
ately keyed version of the compression function is a PRF
then the appropriately keyed version of the hash function
must be a PRF too. This last goal is important due to
the many uses of hash functions as MACs and PRFs via
keying as mentioned above. The final goal we will ask
is that the transform be pseudorandom-oracle preserving
(PRO-Pr) [9].

W   PRO-Pr   [9]. Before
we can explain what we provide we need to explain
some things about PRO-Pr, what is provided by the trans-
forms of [9], and, more importantly, what is not provided.
Specifically, we will argue that the PRO-Pr transforms
of [9] are unsuitable for current use because they fail to
be CR-Pr. This point is somewhat subtle so needs some
explanation.

We use the moniker pseudorandom oracle for any con-
struction that is indifferentiable from a random oracle as
defined in [11]. A transform is PRO-Pr if it preserves the
property of “behaving like a random oracle”: if h is mod-
eled as a random oracle, then Hh should be a pseudoran-
dom oracle. As explained at length in [9], this is a desir-
able property to support the usages of hash functions as
random oracles. We agree.

PRO-Pr seems like a very strong property to have, and
at first glance one is tempted to think that it is the only
property a transform need preserve because it automat-
ically guarantees that the constructed hash function has
many nice properties. For example, the hash function
would be CR. It could be keyed in almost any way to
yield a PRF and MAC. And so on. This would be true, be-
cause random oracles have these properties, and hence so
do pseudorandom oracles. However, we point out that the
above reasoning is flawed and there is a danger to PRO-Pr
in practice. Namely, the fact that a transform is PRO-Pr
does not guarantee that the constructed hash function is
CR, even if the compression function is CR. We demon-
strate this with a counter-example. Namely we give an
example of a transform that is PRO-Pr, yet there is a CR

compression function such that the hash function result-
ing from the transform is not CR. That is, the transform
is PRO-Pr but not CR-Pr, or, in other words, PRO-Pr does
not imply CR-Pr.

What this shows is that using a PRO-Pr transform could
be worse than using the standard, strengthened Merkle-
Damgård transform from the point of view of security be-
cause at least the latter guarantees the hash function is CR
if the compression function is, but the former does not. If
we blindly move to PRO-Pr transforms, our security guar-
antees are actually going down, not up.

How can this be? It comes about because PRO-Pr pro-
vides guarantees only if the compression function is a ran-
dom oracle or pseudorandom oracle. But of course any
real compression function is provably not either of these.
(One can easily differentiate it from a random oracle be-
cause it can be computed by a small program.) Thus,
when a PRO-Pr transform works on a real compression
function, we have essentially no provable guarantees on
the resulting hash function. This is in some ways analo-
gous to the kinds of issues pointed out in [8, 13] about the
sometimes impossibility of instantiating random oracles.

The fact that a PRO-Pr transform need not in general
be CR-Pr does not mean that some particular PRO-Pr
transform is not CR-Pr. We therefore investigate each
of the four PRO-Pr schemes suggested by Coron et al.
The schemes make slight modifications to the MD trans-
form: the first applies a prefix-free encoding, the second
‘throws’ away some of the output, and the third and fourth
utilize an extra compression function application. These
modifications serve to render the MD transform PRO-Pr.
Unfortunately, we show that none of the four transforms
is CR-Pr. In each case, we present an example CR com-
pression function such that the hash function yielded by
the transform is not CR. In particular, this means that
these transforms do not provide the same guarantee as the
existing and in-use Merkle-Damgård transform. For this
reason we think these transforms should not be considered
suitable for use in the design of new hash functions.

C. We clarify that we are not suggesting that
the pseudorandom oracle preservation goal of [9] is unim-
portant or should not be achieved. In fact we think it is a
very good idea and should be a property of any new trans-
form. This is so because in cases where we are (heuristi-
cally) assuming the hash function is a random oracle, this
goal reduces the assumption to the compression function
being a random oracle. What we have shown above is
that, by itself, it is not enough because it weakens exist-
ing, standard-model guarantees. This is why our goal is a
multi-property domain extension transform, in particular
one that is not only PRO-Pr, but also CR-Pr and PRF-Pr.
To be clear, we ask that, for a transform H to be consid-
ered suitable, one should do the following. First, prove

that Hh is CR using only the fact that h is CR. Then show
that Hh is a pseudorandom oracle when h is a pseudo-
random oracle. Finally, use some natural keying strategy
to key Hh and assume that h is a good PRF, then prove
that Hh is also a good PRF.

N . There is to date no transform with all
the properties above. (Namely, that it is PRO-Pr, CR-Pr
and PRF-Pr.) The next contribution of this paper is a
new transform EMD (Enveloped Merkle-Damgård) which
is the first to meet our definition of hash domain exten-
sion security: EMD is proven to be CR-Pr, PRO-Pr, and
PRF-Pr. The transform is simple and easy to implement in
practice (see the figure in Section 5). It is based on the MD
transform and combines two mechanisms to ensure that it
preserves all the properties of interest. The first mech-
anism is the (well-known) Merkle-Damgård strengthen-
ing: we always concatenate an input message with the
64-bit encoding of its length. This ensures that EMD is
CR-Pr. The second mechanism is the use of an ‘enve-
lope’ to hide the internal MD iteration. This technique has
been proposed previously (e.g., it is used in NMAC and
HMAC [3]). In general, the technique involves applying
a distinct compression function (or the same compression
function, but in some distinguished way) to the output of
an MD iteration. Our enveloping technique is novel in
two ways. First, we allow adversarially-controlled mes-
sage bits to be input into the envelope, which increases
the efficiency of the scheme. Second, we utilize a novel
reduction technique in our proof that EMD is PRO-Pr to
show that simply fixing n bits of the envelope’s input is
sufficient to cause the last application of the random oracle
to behave independently with high probability. This solu-
tion allows our transform to work on a single compression
function without requiring the costly work-arounds previ-
ously suggested (e.g., prefix-free encodings or prepending
a block of zeros to input messages).

P  . We remark that it is possi-
ble to patch the transforms of [9] so that they are CR-Pr.
Namely, one could use Merke-Damgård strengthening,
which they omitted. However our transform still has sev-
eral advantages over their transforms. One is that ours is
cheaper, i.e. more efficient, and this matters in practice.
Another is that ours is PRF-Pr. A result of [1] implies that
one of the transforms of [9] is PRF-Pr, but whether or not
this is true for the others is not clear.

S. Figure 1 summarizes our quantitative results.
We now recap our main contributions. First, we show that
property preservation by domain extension transforms is
orthogonal: a transform that preserves one security prop-
erty does not necessarily preserve others. In particular,
we show that pseudorandom oracle preservation does not
imply preservation of collision resistance or PRF preser-
vation. We reinforce this general result by showing that

the PRO-Pr transforms proposed by Coron et al. are not
CR-Pr. We propose that a domain extension transform
only be considered secure if it is simultaneously collision-
resistance preserving, pseudorandom oracle preserving,
and pseudorandom function preserving. Finally we pro-
pose a simple and efficient transform EMD that is the first
to meet all three conditions of security. We utilize the
technique of ‘enveloping’ in novel ways to increase the
efficiency and simplicity of EMD as compared to previ-
ously proposed PRO-Pr schemes.

2 Definitions

N. Let D = {0, 1}d and D+ = ∪i≥1{0, 1}id. We de-
note pairwise concatenation by || , e.g. M || M′. We will
often write the concatenation of a sequence of string by
M1 · · ·Mk, which translates to M1 || M2 || . . . || Mk. For
brevity, we define the following semantics for the nota-
tion M1 · · ·Mk

d
← M where M is a string of |M| bits: 1)

define k = d|M|/de and 2) if |M| mod d = 0 then parse M
into M1, M2, . . ., Mk where |Mi| = d for 1 ≤ i ≤ k, other-
wise parse M into M1, M2, . . ., Mk−1, Mk where |Mi| = d
for 1 ≤ i ≤ k − 1 and |Mk | = |M| mod d. For any fi-
nite set S we write s

$
← S to signify uniformly choosing a

value s ∈ S .

O TM, R O,  . Cryp-
tographic schemes, adversaries, and simulators are mod-
eled as Oracle Turing Machines (OTM) and are possibly
given zero or more oracles, each being either a random
oracle or another OTM (note that when used as an ora-
cle, an OTM maintains state across queries). We allow
OTMs to expose a finite number of interfaces: an OTM
N = (N1,N2, . . . ,Nl) exposes interfaces N1,N2, . . . ,Nl.
For brevity, we write MN to signify that M gets to query
all the interfaces of N.

For a set Dom and finite set Rng we define a random
function by the following TM accepting inputs X ∈ Dom:

Algorithm RFDom,Rng(X):
if T [X] = ⊥ then T [X]

$
← Rng

return T [X]

where T is a table everywhere initialized to⊥. This imple-
ments a random function via lazy sampling (which allows
us to reason about the case in which Dom is infinite). In
the case that Dom = {0, 1}d and Rng = {0, 1}r we write
RFd,r in place of RFDom,Rng. We similarly define RFd,Rng

and RFDom,r in the obvious ways and write RF∗,r in the
special case that Dom = {0, 1}∗. A random oracle is sim-
ply a public random function: all parties (including the ad-
versary) are given access. We write f , g, . . . = RFDom,Rng

to signify that f , g, . . . are independent random oracles
from Dom to Rng.

Transform CR-Pr PRO-Pr PRF-Pr Number of calls to h to hash M, |M| = b ≥ d

Plain MD (MD) No No No N(b) =
⌈

b
d

⌉
Strengthened MD (SMD) [12, 10] No No N(b) =


⌈

b
d

⌉
if b mod d<d−64⌈

b
d

⌉
+ 1 otherwise

Prefix-Free (PRE) No [9] [1] N(b) =
⌈

b
d−1

⌉
Chop Solution (CHP) No [9] ? N(b) =

⌈
b
d

⌉
NMAC Construction (NT) No [9] ? N(b) =

⌈
b
d

⌉
+ 1

HMAC Construction (HT) No [9] ? N(b) =
⌈

b
d

⌉
+ 2

Enveloped MD (EMD) [12] Thm. 2 Thm. 3 N(b) =


⌈

b
d

⌉
if b mod d<d−n−64⌈

b
d

⌉
+ 1 otherwise

Figure 1: Comparison of transform security and efficiency when applied to h: {0, 1}n+d → {0, 1}n. The last column
specifies the number of calls to h needed to hash a b-bit message M under each transform (where b ≥ d).

A transform C describes how to utilize an arbitrary
compression function to create a variable-input-length
hash function. When we fix a particular compression
function f , we get the associated cryptographic scheme
C f ≡ C[f].

C . We consider a function F to be
collision resistant if it is computationally infeasible to
find any two messages M , M′ such that F(M) =
F(M′). For the rest of the paper we use h to always rep-
resent a collision-resistant hash function with signature
h: {0, 1}d+n → {0, 1}n.

PRF. Let F: Keys × Dom → Rng be a function fam-
ily. Informally, we consider F a pseudorandom func-
tion family (PRF) if no reasonable adversary can succeed
with high probability at distinguishing between F(K, ·) for
K

$
← Keys and a random function f = RFDom,Rng. More

compactly we write the prf-advantage of an adversary A
as

Advprf
F (A) = Pr

[
K

$
← Keys; AF(K,·) ⇒ 1

]
− Pr

[
A f (·) ⇒ 1

]
where the probability is taken over the random choice
of K and the coins used by A or by the coins used by f
and A. For the rest of the paper we use e to always rep-
resent a PRF with signature e: {0, 1}d+n → {0, 1}n that is
keyed through the low n bits of the input.

PRO. The indifferentiability framework [11] generalizes
the more typical indistinguishability framework (e.g., our
definition of a PRF above). The new framework captures
the necessary definitions for comparing an object that uti-
lizes public components (e.g., fixed-input-length (FIL)
random oracles) with an ideal object (e.g., a variable-
input-length (VIL) random oracle). Fix some number l.
Let C f1,..., fl : Dom→ Rng be a function for random oracles

f1, . . . , fl = RFD,R. Then let S F = (S 1, . . . , S l) be a simu-
lator OTM with access to a random oracle F = RFDom,Rng

and which exposes interfaces for each random oracle uti-
lized by C. (The simulator’s goal is to mimic f1, . . . , fl in
such a way as to convince an adversary that F is C.) The
pro-advantage of an adversary A against C is the differ-
ence between the probability that A outputs a one when
given oracle access to C f1,..., fl and f1, . . . , fl and the prob-
ability that A outputs a one when given oracle access to F
and S F . More succinctly we write that the pro-advantage
of A is

Advpro
C, S (A) =

∣∣∣∣Pr
[
AC f1 ,..., fl , f1,..., fl ⇒ 1

]
− Pr

[
AF ,S

F

⇒ 1
]∣∣∣∣

where, in the first case, the probability is taken over the
coins used by the random oracles and A and, in the second
case, the probability is over the coins used by the random
oracles, A, and S . For the rest of the paper we use f to
represent a random oracle RFd+n,n.

R. We do not give formal notions of security
(e.g., in terms of negligible functions) and rather give con-
crete statements about the advantage of adversaries us-
ing certain resources. For prf-adversaries we measure the
total number of queries q made and the running time t.
For pro-adversaries we measure the total number of left
queries qL (which are either to C or F) and the number of
right queries qi made to each oracle fi or simulator inter-
face S i. We also specify the resources utilized by simula-
tors. We measure the total number of queries qS to F and
the maximum running time tS . Note that these values are
generally functions of the number of queries made by an
adversary (necessarily so, in the case of tS).

P . In all of our proofs (for all notions of
security) we assume that adversaries make no pointless
queries. In our setting this particularly means that adver-

Algorithm c+(I,M):
M1 · · ·Mk

d
← M; Y0 ← I

for i = 1 to k do
Yi ← c(Mi || Yi−1)

return Yk

d

M1 M2

· · ·

Mk

n n n
YkI

c c c

Figure 2: The Merkle-Damgård iteration.

saries are never allowed to repeat a query to an oracle.

3 Domain Extension using Merkle-
Damgård

T M-D . We focus on variants
of the Merkle-Damgård transform. Using an arbitrary
fixed-input-length function c: {0, 1}d+n → {0, 1}n we wish
to construct a family of variable-input-length functions
Fc: {0, 1}n × {0, 1}∗ → {0, 1}n. We start by defining the
Merkle-Damgård iteration c+: D+ → {0, 1}n by the algo-
rithm specified in Figure 2.

The function c+ only works on strings that are a mul-
tiple of d bits, yet we seek schemes that will work on
arbitrary (or close to arbitrary) string lengths. Thus we
require a padding function pad(M), which for any string
M ∈ {0, 1}∗ returns a string Y of length dd|M|/de. We
assume that pad is one-to-one (this assumption is made
for all padding functions in this paper). Fixing some
IV ∈ {0, 1}n, we define the plain Merkle-Damgård trans-
form MD[c] = c+(IV , pad(·)).

K . In this paper we discuss transforms
that produce keyless schemes. We would also like to
utilize these schemes as variable-input-length PRFs, but
this requires that we use some keying strategy. We fo-
cus on the key-via-IV strategy. Under this strategy, we
replace constant initialization vectors with randomly cho-
sen keys of the same size. For example, if e is a particular
PRF, then keyed MDe would be defined as MDe

K(M) =
e+(K, pad(M)). (it should be noted that this is not a se-
cure PRF). We will always signify the keyed version of a
construction by explicitly including the keys as subscripts.

M- . We would like to reason
about the security of MD and its variants when we make
assumptions about c. Phrased another way, we want
to know if a transform such as MD preserves security
properties of the underlying compression function. We
are interested in collision-resistance preservation, PRO
preservation, and PRF preservation. Let C be a trans-
form that works on functions from {0, 1}d+n to {0, 1}n.

Let h: {0, 1}d+n → {0, 1}n be a collision-resistant hash
function. Then we say that C is collision-resistance pre-
serving (CR-Pr) if the scheme Ch is collision-resistant.
Let f = RFd+n,n be a random oracle. Then we say that C is
pseudorandom oracle preserving (PRO-Pr) if the scheme
C f is a pseudorandom oracle. Let e: {0, 1}d+n → {0, 1}n

be an arbitrary PRF (keyed via the low n bits). Then we
say that C is pseudorandom function preserving (PRF-Pr)
if the keyed-via-IV scheme Ce

K is a PRF.

S  MD  SMD. It is well known that MD is
neither CR-Pr, PRO-Pr, or PRF-Pr [12, 10, 1, 9]. The
first variant that was proven CR-Pr was so-called MD with
strengthening, which we denote by SMD. In this variant,
the padding function is replaced by one with the following
property: for M and M′ with |M| , |M′| then Mk , M′k
(the last blocks after padding are distinct). A straightfor-
ward way to achieve a padding function with this prop-
erty is to include an encoding of the message length in the
padding. In many implementations, this encoding is done
using 64 bits [15], which restricts the domain to strings of
length no larger than 264. We therefore fix some padding
function pad64(M) that takes as input a string M and re-
turns a string Y of length kd|M|/de bits for some number k
such that the last 64 bits of Y are an encoding of |M|. Us-
ing this padding function we define the strengthened MD
transform SMD[c] = c+(IV , pad64(·)). We emphasize
the fact that preservation of collision-resistance is strongly
dependent on the choice of padding function. However,
this modification to MD is alone insufficient for render-
ing SMD either PRF-Pr or PRO-Pr due to simple length-
extension attacks [1, 9].

4 Orthogonality of Property Preser-
vation

In this section we illustrate that property preservation is
orthogonal. Previous work [9] has already shown that
collision-resistance preservation does not imply pseudo-
random oracle preservation. We investigate the inverse:
does a transform being PRO-Pr imply that it is also
CR-Pr? We answer this in the negative by showing how

to construct a PRO-Pr transform that is not CR-Pr. While
this result is sufficient to refute the idea that PRO-Pr is a
stronger security goal for transforms, it does not necessar-
ily imply anything about actual PRO-Pr transforms. Thus,
we investigate the four proposed by Coron et al. and show
that all four fail to preserve collision-resistance. Finally,
lacking a formally meaningful way of comparing pseudo-
random oracle preservation and pseudorandom function
preservation (one resulting in keyless schemes, the other
in keyed), we briefly discuss whether the proposed trans-
forms are PRF-Pr.

4.1 PRO-Pr does not imply CR-Pr
Let n, d > 0 and h: {0, 1}d+n → {0, 1}n be a collision-
resistant hash function and f = RFd+n,n be a random or-
acle. Let Dom,Rng be non-empty sets and let C1 be a
transform for which C f

1 ≡ C1[f] is a pseudorandom or-
acle C f

1 : Dom → Rng. We create a transform C2 that
is PRO-Pr but is not CR-Pr. In other words the result-
ing scheme C f

2 : Dom → Rng is indifferentiable from a
random oracle, but it is trivial to find collisions against
the scheme Ch

2 (even without finding collisions against h).
We modify C1[c] to create C2[c] as follows. First check if
c(0d+n) is equal 0n and return 0n if that is the case. Other-
wise we just follow the steps specified by C1[c]. Thus the
scheme C f

2 returns 0n for any message if f (0d+n) = 0n.
Similarly the scheme Ch

2 returns 0n for any message if
h(0d+n) = 0n. The key insight, of course, is that the dif-
fering assumptions made about the oracle impact the like-
lihood of this occurring. If the oracle is a random oracle,
then the probability is small: we prove below that C f

2 is
a pseudorandom oracle. First we show how to easily de-
sign a collision-resistant hash function h that causes Ch

2
to not be collision resistant. Let h′: {0, 1}d+n → {0, 1}n−1

be some collision-resistant hash function. Then h(M) re-
turns 0n if M = 0d+n, otherwise it returns h′(M) || 1. Fig-
ure 3 summarizes the construction. Collisions found on h
would necessarily translate into collisions for h′, which
implies that h is collision-resistant. Furthermore since
h(0d+n) = 0n we have that Ch

2(M) = 0n for any message M,
making it trivial to find collisions against Ch

2.

Proposition 1 [C2 is PRO-Pr] Let n, d > 0 and
Dom,Rng be non-empty sets and f = RFd+n,n and F =
RFDom,Rng be random oracles. Let C f

1 be a pseudorandom
oracle. Let C f

2 be the scheme as described above and let S
be an arbitrary simulator. Then for any adversary A2 that
utilizes qL left queries, qR right queries, and runs in time
t, there exists an adversary A1 such that

Advpro
C2,S

(A2) ≤ Advpro
C1,S

(A1) +
1
2n .

with A1 utilizing the same number of queries and time
as A2.

Proof: Let f = RFd+n,n and F = RFDom,Rng be ran-
dom oracles. Let A be some pro-adversary against C f

2 .
Let S be an OTM with an interface S f that on (d + n)-bit
inputs returns n-bit strings. We utilize a simple game-
playing argument in conjunction with a hybrid argument
to bound the indifferentiability of C2 by that of C1 (with
respect to simulator S). Figure 3 displays two games,
game G0 (includes boxed statement) and game G1 (boxed
statement removed). The first game G0 exactly simu-
lates the oracles C f

2 and f . The second game G1 ex-
actly simulates the oracles C f

1 and f . We thus have that
Pr

[
AC f

2 , f ⇒ 1
]
= Pr

[
AG0 ⇒ 1

]
and Pr

[
AC f

1 , f ⇒ 1
]
=

Pr
[
AG1 ⇒ 1

]
. Since G0 and G1 are identical-until-bad we

have by the fundamental lemma of game playing [7] that
Pr

[
AG0 ⇒ 1

]
− Pr

[
AG1 ⇒ 1

]
≤ Pr

[
AG1 sets bad

]
. The

right hand side is at most 2−n because f is a random ora-
cle. Thus,

Advpro
C2,S

(A2) = Pr
[
AG0 ⇒ 1

]
− Pr

[
AF ,S

F

⇒ 1
]

= Pr
[
AG0 ⇒ 1

]
− Pr

[
AG1 ⇒ 1

]
+

Pr
[
AC f

1 , f ⇒ 1
]
− Pr

[
AF ,S

F

⇒ 1
]

= Pr
[
AG1 sets bad

]
+ Pr

[
AC f

1 , f ⇒ 1
]
−

Pr
[
AF ,S

F

⇒ 1
]

≤
1
2n + Advpro

C1,S
(A1)

4.2 Insecurity of Proposed PRO-Pr Trans-
forms

C- . The result above tells
us that PRO-Pr does not imply CR-Pr for arbitrary
schemes. What about MD variants? One might hope that
the mechanisms used to create an PRO-Pr MD variant are
sufficient for rendering the variant CR-Pr also. This is not
true. In fact all previously proposed MD variants proven
to be PRO-Pr are not CR-Pr. The four variants are sum-
marized in Figure 4, see [9] for more details.

The first transform is Prefix-free MD specified by
PRE[c] = c+(IV , padPF(·)). It applies a prefix-free
padding function padPF to an input message and then
uses the MD iteration. The padding function padPF
must output strings that are a multiple of d bits with the
property that for any two strings M , M′, padPF(M)
is not a prefix of padPF(M′). The Chop solution sim-
ply drops s bits from the output of the MD iteration ap-
plied to a message. The NMAC transform applies a sec-
ond, distinct compression function to the output of an
MD iteration; it is defined by NT[c, g] = g(c+(IV , ·)),
where g is a function from n bits to n bits (distinct from h).
Lastly, the HMAC Transform is defined by HT[c] =

Let h′: {0, 1}n+d → {0, 1}n−1 be CR. Then
define h: {0, 1}n+d → {0, 1}n by

h(x) =
{

0n if M = 0d+n

h′(M) || 1 otherwise

procedure Initialize
000 f = RFd+n,n

procedure f (x)
100 return f (x)

procedure C(X) Game G0 Game G1

200 Y ← C f
1 (X)

201 if f (0d+n) = 0n then bad ← true; Y ← 0n

202 return Y

Figure 3: (Left) Definition of the collision-resistant compression function used in the proof of Proposition 1 and
the counter-examples of Section 4.2. (Right) Games utilized in the proof of Proposition 1 to show that C f

2 is a
pseudorandom oracle.

Prefix-free MD:

PRE[c] = c+(IV , padPF(·))
where padPF: {0, 1}∗ → D+ is a
prefix-free padding function

NMAC Transform:

NT[c, g] = g(c+(IV , ·))
where g: {0, 1}n → {0, 1}n is a function

Chop Solution:

CHP[c] = first n − s bits of c+(IV , pad(·))

HMAC Transform:

HT[c] = c(c+(IV , 0d || ·) || 0d−n || IV)

Figure 4: The four MD variants proposed in [9] that are PRO-Pr but not CR-Pr.

c(c+(IV , 0d || ·) || 0d−n || IV). This transform similarly uti-
lizes enveloping: the MD iteration is fed into c in a way
that distinguishes this last call from the uses of c inside
the MD iteration. The prepending of a d-bit string of ze-
ros to an input message helps ensure that the envelope acts
differently than the first compression function application.

To simplify exposition, we make a few mild assump-
tions (the weaknesses of the transforms remain with-
out these assumptions). First let IV = 0n and assume
that pad(M) always returns M when |M| is a multiple of d.
We utilize the collision-resistant hash function h, defined
in Figure 3, that maps 0d+n to 0n. Define X = 0d || 1d and
Y = 02d || 1d. To show that the four constructions are not
CR-Pr we simply specify two messages X and Y which
cause the hash function to collide, but do not cause any
collisions on the compression function. Particularly, let
X = 0d || 1d and Y = 02d || 1d. Then PREh(X) = PREh(Y),
and since neither message is a prefix of the other this suf-
fices to show that PRE is not CR-Pr. For the other three
constructions, we have that X = 0d and Y = 02d collide.
Never do any of these cause a collision against h.

The straightforward counter-examples exploit the
weakness of the basic MD transform. As noted previ-
ously, the MD transform does not give any guarantees
about collision resistance, and only when we consider
particular padding functions (i.e., pad64) can we create
a CR-Pr transform. Likewise, we have illustrated that
the mechanisms of prefix-free encodings, dropping output
bits, and enveloping do nothing to help ensure collision-
resistance is preserved, even though they render the trans-
forms PRO-Pr. To properly ensure preservation of both
properties, we must specify transforms that make use of
mechanisms that ensure collision-resistance preservation
and mechanisms that ensure pseudorandom oracle preser-

vation. In fact, it is likely that adding strengthening to
these transforms would render them CR-Pr. However, as
we show in the next section, our new construction (with
strengthening) is already more efficient than these con-
structions (without strengthening).

PRF . It is not formally meaningful to com-
pare PRF preservation with PRO preservation, since the
resulting schemes in either case are different types of ob-
jects (one keyed and one keyless). However we can look
at particular transforms. Of the four proposed by Coron et
al. only PRE is known to be PRF-Pr. Let e be a PRF. Since
we are using the key-via-IV strategy, the keyed version of
PREe is PREe

K(M) = e+(K, padPF(M)). This is already
known to be a good PRF [1]. As for the other three trans-
forms, it is unclear whether any of them are PRF-Pr. For
NT, we note that the security will depend greatly on the
assumptions made about g. For example, if g is not one-
way, then an adversary can determine the values produced
by the underlying MD iteration and mount simple length-
extension attacks. Instead of analyzing these transforms
further (which are not CR-Pr anyway), we look at a new
construction.

5 A Transform that Preserves all
Three Properties: EMD

We propose a transform that is both CR-Pr, PRO-Pr, and
PRF-Pr. Let n, d be numbers such that d ≥ n + 64.
Let c: {0, 1}d+n → {0, 1}n be a function and let D◦ =
∪i≥1{0, 1}(i+1)d−n. Then we define the enveloped Merkle-
Damgård iteration c◦: {0, 1}2n × D◦ → {0, 1}n on c by the
algorithm given in Figure 5.

To specify our transform we require a padding

Algorithm c◦(I1, I2,M):
M1 · · ·Mk

d
← M

P← M1 · · ·Mk−1
return c(c+(I1, P) || Mk || I2)

d

M1

nn
· · ·

Mk−1

n

n

d

Mk

||

n
Yk

I1

I2

c c

c

Figure 5: The EMD iteration.

function padEMD: {0, 1}≤264
→ D◦ for which the

last 64 bits of padEMD(M) encodes 〈|M|〉d. Fix
IV1, IV2 ∈ {0, 1}n with IV1 , IV2. Then we spec-
ify the enveloped Merkle-Damgård transform EMD[c] =
c◦(IV1, IV2, padEMD(·)).

The new transform utilizes two main mechanisms for
ensuring property preservation. The first is the well-
known technique of strengthening: we require a padding
function that returns a string appended with the 64-bit
encoding of the length. This provides domain separa-
tion for strings of distinct lengths, which particularly en-
sures that EMD preserves collision-resistance. The sec-
ond technique is using an ‘extra’ compression function
application to envelope the internal MD iteration. Our en-
velope technique differs from prior work in that we allow
message bits to be included in the envelope’s input (pre-
viously, these bits would be a fixed constant, out of ad-
versarial control). This results in a performance improve-
ment since in practice it is always desirable to have d as
large as possible relative to n (e.g., in SHA-1 d = 512
and n = 160). Finally, we utilize two distinct initial-
ization vectors to provide (with high probability) domain
separation between the envelope and internal applications
of the compression function. This mechanism, and the
associated proof that justifies its use (see the proof of
Theorem 2), allows us to dispel with more costly do-
main separation techniques such as prefix-free encodings
or the prepending of 0d to messages (as used in the HMAC
Transform).

5.1 Security of EMD

C- . Let h: {0, 1}d+n →

{0, 1}n be a collision resistant hash function. Then any
adversary which finds collisions against EMDh (two mes-
sages M , M′ for which EMDh(M) = EMDh(M′)) will
necessarily find collisions against h. This can be proven
using a slightly modified version of the proof that SMD
is collision-resistant [12, 10], and we therefore omit the
details. The important intuition here is that embedding
the length of messages in the last block is crucial; without
the strengthening the scheme would not be collision resis-
tant (similar attacks as those given in Section 4 would be

possible).

PRO . Now we show that EMD is PRO-Pr.
We first prove a slightly different transform is PRO-Pr and
then show that EMD reduces to this other transform. Let
f , g = RFd+n,n be random oracles. For any strings P1 ∈ D+

and P2 ∈ {0, 1}d−n we define the function g f +: D◦ →
{0, 1}n by g f +(P || S) = g(f +(IV1, P1) || P2 || IV2). This
function is essentially EMD f , except that we replace the
envelope with an independent random oracle g. The fol-
lowing lemma states that g f + is a pseudorandom oracle.

Lemma 1 [g f + is a PRO] Let f , g = RFd+n,n. Let A be
an adversary that asks at most qL left queries, q f right f -
queries, qg right g-queries and runs in time t. Then

Advpro
g f +, SB(A) ≤

(qL + qg)2 + q2
f + qgq f

2n

where SB = (SB f , SBg) is defined in Figure 6 and qSB ≤ qg

and tSB = O(q2
f + qgq f).

We might hope that this result is given by Theorem 4
from [9], which states that NT f ,g is indifferentiable from
a random oracle. Unfortunately, their theorem statement
does not allow for adversarially-specified bits included in
the input to g. Thus we give a full proof of Lemma 1.
Here we give some intuition regarding the proof and the
simulator; the full proof and more details are given in a
full version of this paper, see [14].

The simulator SB = (SB f , SBg) exposes two interfaces
that accept (n + d)-bit inputs and reply with n bit out-
puts. Its goal is to behave in such a way that no adver-
sary can determine (with high probability) that it is not
dealing with the construction and two random oracles f
and g. The first interface mimics the internal random ora-
cle f and the second mimics the enveloping random ora-
cle g. The simulator maintains a tree structure that stores
information about adversarial queries (the edges) and the
replies given (the nodes). The root is labeled with IV1.
The tree below is an example after several queries. For
example, a query SB f (0d || IV1) adds the left child of the
root; the random value Y1 is returned to the adversary.
If the next query is SB f (0d || Y1), then the simulator asso-
ciates these two queries by producing the right child of Y1,

O  SB f (X):

Y
$
← {0, 1}n

Parse X into U || V s.t. |U | = d, |V | = n
if V = IV1 then NN(U)← Y
if M1 · · ·Mi ← GN(V) then

NN(M1 · · ·MiU)← Y
return Y

O  SBg(X):
Parse X into V || U || W s.t. |V | = n, |U | = d − n, |W | = n
if W = IV2 and M1 · · ·Mi ← GN(V) then

return F (M1 · · ·MiU)

return Y
$
← {0, 1}n

O  SA(X):

Y
$
← {0, 1}n

Parse X into V || U || W s.t. |V | = n, |U | = d − n, |W | = n
if W = IV2 then

if M1 · · ·Mi ← GN(V) then
return F (M1 · · ·MiU)

else return Y
Parse X into U || V s.t. |U | = d, |V | = n
if V = IV1 then NN(U)← Y
if M1 · · ·Mi ← GN(V) then

NN(M1 · · ·MiU)← Y
return Y

Figure 6: Pseudocode for simulators SB (utilized in the proof of Lemma 1) and SA (utilized in the proof of Theorem 2).

Y1 Y3

1d

1d0d

Y2 Y4 Y5

0d

0d 0d

IV1

labeled accordingly. The dotted-out left child would cor-
respond to a pointless query, and thus can’t appear in the
tree. Finally, if the adversary queries SBg(Y2 || M || IV2)
(for any M ∈ {0, 1}d−n) the simulator searches the tree for
a node labeled Y2, and finding one, returnsF (0d || 0d || M)
(using the edge labels on the path from the root to form
this query). Note that if the low bits are not IV2, the sim-
ulator just returns random bits. Intuitively, the simulator
will succeed whenever no Y values collide and the adver-
sary does not predict a Y value.

The next theorem captures the main result.

Theorem 2 [EMD is PRO-Pr] Fix n, d, and let
IV1, IV2 ∈ {0, 1}n with IV1 , IV2. Let f = RFd+n,n

and F = RF∗,n be random oracles. Let A be an adversary
that asks at most qL left queries, each of length no larger
than ld bits, q1 the number of right queries with lowest n
bits not equal to IV2, q2 the number of right queries with
lowest n bits equal to IV2, and runs in time t. Then

Advpro
EMD, SA(A) ≤

(qL + q2)2 + q2
1 + q2q1

2n +
lq2

L

2n .

where the simulator SA is defined in Figure 6 and qSA ≤ q2
and tSA = O(q2

1 + q2q1).

Proof: Let f = RFd+n,n. Note that EMD f is just a
special case (due to padding) of the function f◦(M) =
f ◦(IV1, IV2,M) and we therefore prove the more general
function is a PRO. Let F = RFD◦,n. In Figure 6 we define
the simulator SA whose job is to mimic f in a way that

convinces any adversary that F is actually f◦. The behav-
ior of SA is essentially identical to SB, the only difference
is that we use IV2 to distinguish the envelope from inter-
nal applications of f .

Let A be an adversary attempting to differentiate be-
tween f◦, f and F , SAF . We will show how this adversary
can be used to construct a pro-adversary B against g f +

(i.e., one that attempts to distinguish between g f +, f , g
and F , SBF , SBg). We utilize the three games shown in
Figure 7 to perform the reduction. The first game G0 sim-
ulates exactly the pair of oracles f◦, f . It uses two tables f
and fIV2 to implement the random oracle f . The fIV2 table
is used to track all domain points for which the low n-
bits are equal to IV2. The f table tracks the other domain
points. Note that the f table also can have domain/range
pairs defined for domain points with the low bits equal
to IV2, however these are never used in the rest of the
game. We thus have that Pr

[
Af◦, f ⇒ 1

]
= Pr

[
AG0 ⇒ 1

]
.

We create a new game G1 (the second figure with the
boxed statement included) by splitting the right oracle of
G0 into two oracles: one for accessing the f table and one
for accessing the fIV2 table. Additionally we add a flag
bad, set to true at line 004. This game now reveals three
interfaces, and so we create a new adversary B that be-
haves exactly as A except as follows. Whenever A queries
its right oracle on a string X, we have B query R f (X) if
the low n bits of X are not IV2. Otherwise B queries
R fIV2 (X). Because G1 returns values to B that are dis-
tributed identically to those G0 returns to A we have that
Pr

[
AG0 ⇒ 1

]
= Pr

[
BG1 ⇒ 1

]
. Our final game is G2 (sec-

ond figure with the boxed statement removed). By remov-
ing line 005, the new game G2 separates the single ran-
dom oracle in the prior games into two separate random
oracles. Since G1 and G2 are identical until bad we have
that Pr

[
BG1 ⇒ 1

]
− Pr

[
BG2 ⇒ 1

]
≤ Pr

[
BG2 sets bad

]
.

The right hand side of this equation can be upper bound
as follows. The total number of times that line 003 can
be executed is lqL. Each time a (potentially) different ran-
dom value Yi−1 is tested for equality against a fixed con-
stant IV2. Thus we have that Pr

[
BG2 sets bad

]
≤ lqL/2n.

Game G0

A   L(M):

000 M1 · · ·Mk
d
← M; Y0 ← IV1

001 for 1 ≤ i ≤ k − 1
002 Yi ← Sample-f(Mi || Yi−1)
003 if Yi−1 = IV2 then
004 Yi ← Sample-fIV2(Mi || Yi−1)
005 Yk ← Sample-fIV2(Yk−1 || Mk || IV2)
006 return Yk

A   R f (X):
100 Parse X into U || V s.t. |U | = d, |V | = n
101 if V = IV2 then return Sample-fIV2(X)
102 return Sample-f(X)

S Sample-f(X):

200 if f[X] = ⊥ then f[X]
$
← {0, 1}n

201 return f[X]

S Sample-fIV2(X):

300 if fIV2[X] = ⊥ then fIV2[X]
$
← {0, 1}n

301 return fIV2[X]

Game G1 Game G2

A   L(M):

000 M1 · · ·Mk
d
← M; Y0 ← IV1

001 for 1 ≤ i ≤ k − 1
002 Yi ← Sample-f(Mi || Yi−1)
003 if Yi−1 = IV2 then
004 bad ← true
005 Yi ← Sample-fIV2(Mi || Yi−1)
006 Yk ← Sample-fIV2(Yk−1 || Mk || IV2)
007 return Yk

A   R f (X):
100 return Sample-f(X)

A   RIV2(X):
400 return Sample-fIV2(X)

S Sample-f(X):

200 if f[X] = ⊥ then f[X]
$
← {0, 1}n

201 return f[X]

S Sample-fIV2(X):

500 if fIV2[X] = ⊥ then fIV2[X]
$
← {0, 1}n

501 return fIV2[X]

Figure 7: Games utilized in proof of Theorem 2.

Now we argue that Pr
[
AF ,SA ⇒ 1

]
=

Pr
[
BF ,SB f ,SBg ⇒ 1

]
. Referring back to Figure 6, we

see that SA and SB behave identically if all queries
to SBg from an adversary have the low n bits equal
to IV2 and all queries to SB f from an adversary have
the low n bits not equal to IV2. But this is the behavior
of B, by construction, and so the probabilities are equal.
Combining all of the above facts we get that

Advpro
EMD f ,SA

(A) ≤ Advpro
f◦,SA(A)

= Pr
[
Af◦, f ⇒ 1

]
− Pr

[
AF ,SA ⇒ 1

]
= Pr

[
AG0 ⇒ 1

]
− Pr

[
AF ,SA ⇒ 1

]
= Pr

[
BG1 ⇒ 1

]
− Pr

[
BF ,SB f ,SBg ⇒ 1

]
≤ Pr

[
BG2 ⇒ 1

]
+

lqL

2n −

Pr
[
BF ,SB f ,SBg ⇒ 1

]
= Advpro

g f +,SB(B) +
lqL

2n .

Let q1 be the number of queries by B to SB f and q2 be the
number of queries to SBg. Then we apply Lemma 1 and
the theorem statement follows.

PRF . We utilize the key-via-IV strategy
to create a keyed version of our transform, which is
EMDe

K1,K2
(M) = e◦(K1,K2,M) (for some PRF e). The re-

sulting scheme is very similar to NMAC, which we know
to be PRF-Pr [2]. Because our transform allows direct
adversarial control over a portion of the input to the en-
velope function, we can not can not directly utilize the
proof of NMAC (which assumes instead that these bits
are fixed constants). However, the majority of the proof
of NMAC is captured by two lemmas. The first (Lemma
3.1 [2]) shows (informally) that the keyed MD iteration is
unlikely to have outputs that collide. The second lemma
(Lemma 3.2 [2]) shows that composing the keyed MD
iteration with a separately keyed PRF yields a PRF. We
omit the details.

Theorem 3 [EMD is a PRF-Pr] Fix n, d and let
e: {0, 1}d+n → {0, 1}n be a function family keyed via the
low n bits of its input. Let A be a prf-adversary against
keyed EMD using q queries of length at most m blocks
and running in time t. Then there exists prf-adversaries A1
and A2 against e such that

Advprf
EMDe

K1 ,K2
(A) ≤ Advprf

e (A1)+
(
q
2

) [
2m · Advprf

e (A2) +
1
2n

]
where A1 utilizes q queries and runs in time at most t
and A2 utilizes at most two oracle queries and runs in
time O(mTe) where Te is the time for one computation
of e.

References
[1] M. Bellare, R. Canetti, and H. Krawczyk. Pseudo-

random functions revisited: the cascade construction
and its concrete security. In FOCS ’96: Proceed-
ings of the 37th Annual Symposium on Foundations
of Computer Science, page 514, Washington, DC,
USA, 1996. IEEE Computer Society.

[2] Mihir Bellare. New Proofs for NMAC and HMAC:
Security Without Collision-Resistance. Cryptology
ePrint Archive, Report 2006/043, 2006. http://
eprint.iacr.org/.

[3] Mihir Bellare, Ran Canetti, and Hugo Krawczyk.
Keying hash functions for message authentication.
In CRYPTO ’96: Proceedings of the 16th Annual
International Cryptology Conference on Advances
in Cryptology, pages 1–15, London, UK, 1996.
Springer-Verlag.

[4] Mihir Bellare and Phillip Rogaway. Random ora-
cles are practical: a paradigm for designing efficient
protocols. In CCS ’93: Proceedings of the 1st ACM
conference on Computer and communications secu-
rity, pages 62–73, New York, NY, USA, 1993. ACM
Press.

[5] Mihir Bellare and Phillip Rogaway. Optimal asym-
metric encryption. In EUROCRYPT, pages 92–111,
1994.

[6] Mihir Bellare and Phillip Rogaway. The exact secu-
rity of digital signatures - how to sign with rsa and
rabin.5. In EUROCRYPT, pages 399–416, 1996.

[7] Mihir Bellare and Phillip Rogaway. The security
of triple encryption and a framework for code-based
game-playing proofs. In EUROCRYPT, pages 409–
426, 2006.

[8] Ran Canetti, Oded Goldreich, and Shai Halevi. The
random oracle methodology, revisited. J. ACM,
51(4):557–594, 2004.

[9] Jean-Sebastien Coron, Yevgeniy Dodis, Cecile Ma-
linaud, and Prashant Puniya. Merkle-Damgard Re-
visited: How to Construct a Hash Function. In Ad-
vances in Cryptology - Crypto’05, Lecture Notes in
Computer Science, volume 3621, pages 21–39, Lon-
don, UK, 2004. Springer-Verlag.

[10] Ivan Bjerre Damgård. A design principle for hash
functions. In CRYPTO ’89: Proceedings on Ad-
vances in cryptology, pages 416–427, New York,
NY, USA, 1989. Springer-Verlag New York, Inc.

[11] Ueli M. Maurer, Renato Renner, and Clemens
Holenstein. Indifferentiability, impossibility results
on reductions, and applications to the random oracle
methodology. In TCC, pages 21–39, 2004.

[12] Ralph C. Merkle. One way hash functions and DES.
In CRYPTO ’89: Proceedings on Advances in cryp-
tology, pages 428–446, New York, NY, USA, 1989.
Springer-Verlag New York, Inc.

[13] Mihir Bellare and Alexandra Boldyreva and Adriana
Palacio. An Uninstantiable Random-Oracle-Model
Scheme for a Hybrid-Encryption Problem. In C.
Cachin and J. Camenisch, editor, Advances in Cryp-
tology - EUROCRYPT’04, Lecture Notes in Com-
puter Science, volume 3027. Springer-Verlag, 2004.

[14] Mihir Bellare and Thomas Ristenpart. Multi-
Property-Preserving Hash Domain Extension: The
EMD Transform (full version). http://www.cse.
ucsd.edu/∼tristenp/emd.html.

[15] National Institute of Standards and Technology.
FIPS PUB 180-1: Secure Hash Standard. April
1995. Supersedes FIPS PUB 180 1993 May 11.

[16] RSA Laboratories. RSA PKCS #1 v2.1: RSA Cryp-
tography Standards. ftp://ftp.rsasecurity.
com/pub/pkcs/pkcs-1/pkcs-1v2-1.pdf.

[17] Xiaoyun Wang and Hongbo Yu. How to Break MD5
and Other Hash Functions. In Advances in Cryptol-
ogy - EUROCRYPT’05, Lecture Notes in Computer
Science, pages 19–35, 2005.

[18] Xiaoyun Wang and Yiqun Lisa Yin and Hongbo Yu.
Finding Collisions in the Full SHA-1. In Advances
in Cryptology - CRYPTO’05, Lecture Notes in Com-
puter Science, pages 17–36, 2005.

